Lock Overhead vs Lock Contention


Before being introduced to lock granularity, one needs to understand three concepts about locks.

lock overhead: The extra resources for using locks, like the memory space allocated for locks, the CPU time to initialize and destroy locks, and the time for acquiring or releasing locks. The more locks a program uses, the more overhead associated with the usage.
lock contention: This occurs whenever one process or thread attempts to acquire a lock held by another process or thread. The more fine-grained the available locks, the less likely one process/thread will request a lock held by the other. (For example, locking a row rather than the entire table, or locking a cell rather than the entire row.)
deadlock: The situation when each of two tasks is waiting for a lock that the other task holds. Unless something is done, the two tasks will wait forever.

There is a tradeoff between decreasing lock overhead and decreasing lock contention when choosing the number of locks in synchronization.

An important property of a lock is its granularity. The granularity is a measure of the amount of data the lock is protecting. In general, choosing a coarse granularity (a small number of locks, each protecting a large segment of data) results in less lock overhead when a single process is accessing the protected data, but worse performance when multiple processes are running concurrently. This is because of increased lock contention. The more coarse the lock, the higher the likelihood that the lock will stop an unrelated process from proceeding. Conversely, using a fine granularity (a larger number of locks, each protecting a fairly small amount of data) increases the overhead of the locks themselves but reduces lock contention. Granular locking where each process must hold multiple locks from a common set of locks can create subtle lock dependencies. This subtlety can increase the chance that a programmer will unknowingly introduce a deadlock.[citation needed]


Author: lwpro2

Java J2EE professional

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s